If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-8y^2=-72
We move all terms to the left:
-8y^2-(-72)=0
We add all the numbers together, and all the variables
-8y^2+72=0
a = -8; b = 0; c = +72;
Δ = b2-4ac
Δ = 02-4·(-8)·72
Δ = 2304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2304}=48$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-48}{2*-8}=\frac{-48}{-16} =+3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+48}{2*-8}=\frac{48}{-16} =-3 $
| 4x^2=(x+1)^2 | | 4x+8-2x=28+7x | | 3m-9=-36 | | 4(x+3)+3=5(x+4) | | -18/17=11/17-5/17x | | 10(x+2)-15=65 | | 2(2x-18)=-12x+2x | | 2x-18=2(-12x+2x) | | r+0.7=1-0.2r | | 23.4+(-0.6)x=16 | | (2x-18=2(-12x+2x) | | x+20.7=9.5x | | 6y5=7 | | 22/3x=-5 | | 45=3(y+5) | | 19m=152 | | 13u−9u=20 | | (5⁄8)d=45 | | -2=-g/4 | | 7/8x−12=3/1/6x+5 | | 1.9s+6=3.1−s | | 0=-a+1 | | 2^x^2=32 | | 63=9+9w | | 5=-w+7 | | 10^1-x=3 | | 5u-10.3=2.2 | | 5-3x=8x+25 | | 6(p+4)=48 | | 8+5.6-y=6.5 | | 2y+3=17.8 | | 32.4-y=25 |